

MACHINE LEARNING

ARCHITECTURE - function	E < functional form of the model (template of the mathematical function)						
PARAMETERS Neight							
PREDICTIONS . results	results of the model						
computed	from the independent variable (without the labels)						
LOSS Measure	of performance						
depends	on the predictions and correctness of the labels and targets						
deep learning braining loop	LADELS dependent variable						
	LOSS KEY TO DEEP LEARNING						
INPUTS ARCHITECIUR	determining how to fit the parameters						
RAA AMETERS	of a model to get it to solve the						
THKHITEIENS	underlying problem						
INITATIONIC							

LIMITATION S

- model cannot be created without data
- ▶ model can learn only on the patterns seen in the imput data (I'e. training data)
- creates only predictions not recommended actions
 La can create gaps between goals and modul capabilities
- > to traim we need imput data + labels
- > problems with lack of Rabeled data
- model vs environment => feedback loops

biased model => biased results => using the model enhaces the bias further. (e.g. predictive policing)

FASTAI IMAGE RECOGNIZER

get the latest version of fastai ! pip install - Ugg fastai

PRETRAINED MODEL: a model that has weights that have been trained on another dataset.	nearly always use a pre-trained model vision - learner() since it is specifically
using a pretrained modul for a task different	 removes the last layer replaces it with one or
than what was originally trained for is	more new layers with
called TRANSFER LEARNING	rando mized weights head

□ many non-image tasks can be represented as image ■ use CNN architecture to build models.
 L sound, time series, computer mouse behavior, malware classification
 □ see book pg 36-39 for more examples

VALIDATION & TEST SETS

 always split the data if we train more the always slowly the mode construct the the used to evaluate) sets	hoosing the learnin nodel architectwe data augmentation hyperparat	ng rate			
	TRAINING PROCESS	TEST	ING			
TRAINING DATA	fully exposed	not .	exposed			
VALIDATION DATA	partially exposed	not.	exposed 7	Should have	enough data	to ensure
TEST DATA	not exposed	- fully	exposed] that we get	good estimate	s of accuracy

Validation and test sets have to be representative of the future data e.g. choosing a random validation & tests for time series data is structurally wrong =) not representative I see more examples in the book pg. 51.